成人高考高起点《数学(理)》难点讲解(2)
难点:三个“二次”及关系
三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具。高考试题中近一半的试题与这三个“二次”问题有关。本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。
难点磁场
已知对于x的所有实数值,二次函数f(x)=x2-4ax+2a+12(a∈R)的值都是非负的,求关于x的方程 =|a-1|+2的根的取值范围。
难点:求解函数解析式
求解函数解析式是高考重点考查内容之一,需引起重视。本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力。
难点磁场
已知f(2-cosx)=cos2x+cosx,求f(x-1)。
案例探究
[例1](1)已知函数f(x)满足f(logax)= (其中a>0,a≠1,x>0),求f(x)的表达式。
(2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(-1)|=|f(0)|=1,求ゝ(x)的表达式。
难点:函数值域及求法
函数的值域及其求法是近几年高考考查的重点内容之一。本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题。
难点磁场
设m是实数,记M={m|m>1},f(x)=log3(x2-4mx+4m2+m)。
(1)证明:当m∈M时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则m∈M.
(2)当m∈M时,求函数f(x)的最小值。
(3)求证:对每个m∈M,函数f(x)的最小值都不小于1.
难点:奇偶性与单调性(一)
函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样。本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象。
难点磁场
设a>0,f(x)= 是R上的偶函数,(1)求a的值;(2)证明: f(x)在(0,+∞)上是增函数。
山东成考网申明:
(一)由于各方面情况的调整与变化本网提供的考试信息仅供参考,敬请以教育考试院及院校官方公布的正式信息为准。
(二)本网注明信息来源为其他媒体的稿件均为转载体,免费转载出于非商业性学习目的,版权归原作者所有。如有内容与版权问题等请与本站联系。联系方式:邮件429504262@qq.com
以上就是关于“成人高考高起点《数学(理)》难点讲解(2)”的全部内容,想要了解更多关于学历提升、报考费用、加分政策、志愿填报、录取分数线等的相关问题,可以随时联系山东成教网的《专业老师》进行沟通了解。